Adolescent Substance Use Disorders, Psychological Regulation, and the Frontoparietal Network

> Duncan B. Clark MD PhD Michael D. De Bellis MD Tammy Chung PhD Beatriz Luna PhD University of Pittsburgh

Research Society on Alcoholism Monday, June 24, 2013

Outline

- Early study: hippocampus
- Conceptual model
 - -Brain maturation and self-control
- Research review
 - -Results & limitations
- Conclusions

Adolescent AUD and Hippocampus

Subjects: Matched Groups

- Adolescent AUD (n=12)
- Controls (n=24)

Results

- Hippocampal volume: AUD < Controls
- Hippocampus x AUD duration: r=-.73

DeBellis, Clark et al. Am J Psychiatry 2000

Hippocampal volume

 left
 right

 • AUD
 4.0 ± 0.4 4.1 ± 0.4

 • Controls
 4.6 ± 0.6 4.5 ± 0.5

De Bellis, Clark, et al. (2000)

Total hippocampal volumes means (cm³; ICV adjusted) adolescent onset AUD vs matched controls $(F_{2.33}=7.11, p=.01).$

Adolescent AUD and Hippocampus

"Replications"

- Nagel, Tapert et al. Psychiat Res 2005
- Negative studies?

Animal studies

- Rats (Nixon & Crews, J Neurochem 2002)
- Non-human primates (Taffe et al. PNAS 2010)

Conclusion

- Teen alcohol use can damage hippocampus
- Dose-response? Vulnerabilities?

Outline

- Early study: hippocampus
- Conceptual model
 - -Brain maturation and self-control
- Research review
 - -Results & limitations
- Conclusions

Adolescent-onset SUDs as part of a coherent developmental trajectory

- Childhood inattention, impulsive aggression, irritability
- Adolescent SUDs as manifestations of these propensities using available substances
- Adulthood features extend to substances available to adults, social difficulties involve family and work

Functional connectivity: Yeo et al. 2011

Methods

- 1,000 subjects
- MRI resting-state functional connectivity
- Identify functionally coupled regions
 Result
- 7 functionally coupled networks
- 17 network solution also presented

Yeo et al. (2011) Organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiology

7 cerebral cortex networks

- Frontoparietal
- Limbic
- Dorsal attention
- Ventral attention
- Somatosensory
- Visual
- Default

Frontoparietal Cortex

Anatomy

- Prefrontal cortex
- Posterior parietal cortex
- Anterior cingulate
- Superior longitudinal fasciculus

Frontoparietal Cortex

Functions: "Executive control circuit"

- Working memory
- Selective attention
- Rule-based problem solving
- Goal-directed decision making

Neuroimaging approaches

Macrostructural

- White matter volumes
- Gray matter volumes
 Microstructural: Diffusion Tensor Imaging
- TBSS
- Regional
- Functional MRI
- Antisaccade Task

Macrostructure

Subjects

- Adolescent AUD (n=14)
- Matched controls (n=28)
 Results
- PFC white matter volume
- PFC gray matter volumes
- PFC gray x maximum drinks R= -0.78 (n=14), p<.001
 DeBellis, Clark et al. ACER 2006

Prefrontal white matter volumes in adolescents (mean cm3 ± SD)

De Bellis, Clark, et al. ACER (2005)

Diffusion Tensor Imaging

Neurodevelopmental Maturation

- n =142
- Stratification
 - Age: 12: 24%; 13: 23%; 14: 27%; 15: 26%
 - Gender: males: 47%; females: 53%
 - Race: White: 73%; AA: 27%
- Other characteristics
 - Alcohol use: 12: 3%; 13: 13%; 14: 29%; 15: 27%
 - Binges: 12: 0%; 13: 3%; 14: 3%; 15: 5%
 - AUD: n=1; Other SUD (cannabis): n=3
 - Parental AUDs: 38%

Regional DTI FA x age (ages 12-15)

r

Region

- Prefrontal
- Cingulate
- Parietal
- Temporal

.24* .23* .21* .25*

*significant @ p<.05

DTI FA Microstructure: TBSS

Subjects

- Adolescent SUD (n=24)
- Matched Controls (n=12)
 MRI Analysis: TBSS
 Results
- SLF FA: SUD< Controls
- Females greater difference than males

Thatcher, Clark et al. DAD 2010

Longitudinal fasciculus

White Matter Microstructure in Adolescents with SUDs

Thatcher, Clark et al (July 2010) Drug and Alcohol Dependence

DTI FA Microstructure: Regional

Subjects: ages 14-19 years old

- Adolescent SUD (n=35)
- Matched Controls (n=20)
 MRI Analysis: FreeSurfer
 Measures
- Behavior Rating Inventory of Executive Function
- Regional white matter volumes
- Regional white matter DTI FA

Clark et al. Addiction 2011

BRIEF scores

Prefrontal FA by DTI

Parietal FA by DTI

Regional DTI FA x BRIEF

*significant @ p<.05; **<.01

DTI FA and Treatment Outcome

Subjects: Adolescents SUD ages 14-18 Intensive Outpatient SUD Program MRI Analysis: FreeSurfer Measures

- Baseline regional white matter DTI FA
- 6-month Rutgers Alcohol Problem Index
 Results
- PFC FA x 6-mo RAPI: r= -.49**
- Parietal FA x 6-mo RAPI: r= -.42** Chung, Clark et al. Psychol Addictive Beh 2012

Behavioral regulation: Anti-saccade task Look to the "mirror" location of the target

Antisaccade Task: Reward & Neutral Trials

Geier, Luna et al (2010) Cerebral Cortex

Adolescent SUD and AS Task

Subjects: Matched Groups

- Adolescent SUD (n=12)
- Controls (n=12)

Results

- % correct
 - SUD group: neutral < reward</p>
 - Controls: neutral vs reward not sig different
- Prefrontal activation differences

Chung, Clark et al. DAD 2011

Behavioral Data: Antisaccade Error Rate

Chung, Clark et al. Drug & Alcohol Dependence 2011

Adolescent SUD & frontoparietal network

- Smaller PFC white matter volume
- Disorganized white matter
 - PFC, Parietal cortex, SLF
- Deficits in executive function correlate with disorganized PFC & Parietal WM
- Disorganized PFC and Parietal WM predicts poorer treatment outcome
- Behavioral inhibition task

Less PFC activation - neutral condition (worse performance) More PFC activation - reward condition (normal performance)

Conclusions

- High risk teens may have brain maturation deficits
- Teens can have substance induced brain deficits
- While studies not definitive, teen abstinence is safest option
- Short-term incentives enhance abstinence
- SUD teens achieving abstinence remain vulnerable

Further Reading

Clark, Chung, Pajtek, Zhai, Long & Hasler *Neuroimaging methods for adolescent substance use disorder prevention science*.
Prevention Science 2013

email: clarkdb@upmc.edu