Age-Related Differences in Adolescent Brain Microstructure: Initial Findings from National Consortium on Alcohol & Neurodevelopment in Adolescence

Kilian M. Pohl, Ph.D.

Center for Health Sciences, SRI International

Department of Psychiatry & Behavioral Sciences, Stanford

kilian.pohl@sri.com + http://www.stanford.edu/~kpohl

Financial Interest Disclosure

Salary and Research Support of Kilian M Pohl, Ph.D.

Investigate Aging of the White Matter Microstructure in Adolescents

Overview

- NCANDA Data Acquisition
- DWI Specific Processing
- Current Findings (N=671)

Data Acquisition

Monitoring brain development of 831 adolescence over a 5 year period across 5 sites

NCANDA Collection Sites

Sites collect:

- Demographic Information
- Clinical Data
- Neuropsychological Test Scores
 - MRI
 - Structural
 - Diffusion
 - Functional

NCANDA – Informatics Platform

Robustly and coherently fusing data across time, sites, and modalities

Diffusion Weighted Imaging

White matter contains axonsFibers restrict diffusionthat group together to bundlesof water moleculesconnecting gray matter regionsof water molecules

Diffusion Weighted Imaging

Measure the rate of diffusion within white matter

by varying gradient direction of scanner's magnetic field

Ellipsoid represents diffusion direction at location

Diffusion Weighted Imaging

Summarize diffusion via Fractional Anisotropy (FA)

Acquisition

Acquire DWI of 831 subjects (12-22 years) on Siemens TIM TRIO and GE Discovery MR750:

• Reverse:

2D Axial Spin Echo Echo-Planar - b=0/500, 6 directions (TR=10,000, TE=85, Thick=2.5, Loc=65, FOV=240, xy_matrix=96x96, Phase = A/P, Partial k-space (48/64), Acceleration=2, Resolution=2.5x2.5x2.5 mm, Fat Sat=on)

To correct for B0 field inhomogeneity spatial distortion

• Forward:

2D Axial Spin Echo Echo-Planar - b=0/1000, 60 directions (TR=10,000, TE=85, Thick=2.5, Loc=65, FOV=240, xy_matrix=96x96, Phase = A/P, Partial k-space (48/64), Acceleration=2, Resolution=2.5x2.5x2.5 mm, Fat Sat=on)

To compute FA Maps

Data Distribution and Archival

created by N. Nichols

Archive and share data via local it infrastructure and the Cloud

Overview

- NCANDA Data Acquisition
- DWI Specific Processing
- Current Findings (N=671)

Correct for Manufacture Differences

Normalize FA accounting for scanner differences:

- scan the same 3 human phantoms at all 5 sites
- compute ratio of mean FA value across scanner type
- apply ratio to FA maps

Tract-Based Spatial Statistics (TBSS)*

* Smith et al. 2006

Tract-Based Spatial Statistics (TBSS)*

* Smith et al. 2006

Compute Mean Skeleton

Tract-Based Spatial Statistics (TBSS)*

* Smith et al. 2006

Compute Subject Specific Skeleton

Compute Mean Skeleton FA for ROI

* Smith et al. 2006

ROIs are defined according to JHU DTI Atlas (Mori et al. 2005)

General Additive Model (GAM)

For each ROI of the atlas regress a thin plate spline with 3 control points to the mean skeleton FA values of that region (meanFA_{ROI}) of the 671 subjects with the subject's age being the predictor value and factors race, sex, and suptent supratentorium volume (svol):

GAM[meanFA_{ROI} ~ s(age, bs = "ts", k = 3) + race + sex + svol]

Picture

P –value computations

Overview

- NCANDA Data Acquisition
- DWI Specific Processing
- Current Findings (N=671)

Global Skeleton

- Fiber organization peaks at 18.2 years
- African-Americans have higher and Asians have lower mean skeleton FA compared to Caucasians

P value of findin

PROJECTION FIBERS: Brainstem Tracts

Kilian M. Pohl

PROJECTION FIBERS: Corticospinal Tracts (Part 1)

PROJECTION FIBERS: Corticospinal Tracts (Part 2)

ASSOCIATION FIBERS: Fasciculi

Conclusion

- Heterochronicity characterizes developmental patterns of white matter fiber systems in adolescence, e.g., commissural and selective projection systems reach peak fiber organization (assumed from FA) earlier than limbic association fibers.
- These patterns of age-related differences need confirmation with longitudinal examination.
- The continuing development of fiber bundles estimated from this cross-sectional analysis may render them vulnerable to environmental insult, including initiation of hazardous drinking.

Thank You

Dongjin Kwon, Ph.D. Nolan Nichols, Ph.D.

Yong Zheng, Ph.D.

This work was supported by the U.S. National Institute on Alcohol Abuse and Alcoholism with co-funding from the National Institute on Drug Abuse, the National Institute of Mental Health, and the National Institute of Child Health and Human Development [NCANDA grant numbers: AA021697, AA021695, AA021692, AA021696, AA021681, AA021690, AA021691

