Early Abstinence-Related Improvements Following Adolescent Heavy Episodic Drinking

Susan Tapert, Nicole Bekman, Jennifer Winward, Carmen Pulido, & Sandra Brown
Recovery from Teen Drinking

- Study design
- Neurocognition
- Alcohol cue reactivity
- Negative affect
- Distress tolerance
Background

• Adolescent heavy drinking is common
• Linked to problems:
 – Neurocognitive performance
 – Risk taking circuitry
 – Alcohol cue reactivity
 – Affect
 – Distress tolerance
• Recover with abstinence?
Hypotheses

• Heavy drinkers worse at week 1-3
• Improved after 3 weeks of abstinence
Design

Monitored Abstinence Period:
- Utox 3x/week
- Daily text mood ratings

Baseline
- Scan
- NP
- Interview
- ~5 days abstinent

+2 weeks
- Scan
- NP
- Interview
- ~19 days abstinent

+4 weeks
- Scan
- NP
- Interview
- ~33 days abstinent
Participants

<table>
<thead>
<tr>
<th></th>
<th>Heavy Drinkers (n=39)</th>
<th>Controls (n=26)</th>
</tr>
</thead>
<tbody>
<tr>
<td>* p<.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (range 16-18)</td>
<td>17.7</td>
<td>17.6</td>
</tr>
<tr>
<td>% Female</td>
<td>46%</td>
<td>46%</td>
</tr>
<tr>
<td>Grade point average</td>
<td>3.3</td>
<td>3.6</td>
</tr>
<tr>
<td>CBCL Externalizing T-score *</td>
<td>49.0</td>
<td>41.5</td>
</tr>
<tr>
<td>CBCL Internalizing T-score</td>
<td>45.6</td>
<td>43.5</td>
</tr>
<tr>
<td>5th grade language score</td>
<td>345.8</td>
<td>370.3</td>
</tr>
<tr>
<td>5th grade math score</td>
<td>342.3</td>
<td>394.7</td>
</tr>
</tbody>
</table>
Substance Use

<table>
<thead>
<tr>
<th>Heavy Drinkers:</th>
<th>M ±SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcohol use occasions, Lifetime</td>
<td>220 ±174</td>
</tr>
<tr>
<td>Binge drinking occasions, Lifetime</td>
<td>115 ±92</td>
</tr>
<tr>
<td>Alcohol withdrawal symptoms, Lifetime</td>
<td>4 ±2</td>
</tr>
<tr>
<td>Max drinks/occasion, Lifetime</td>
<td>11 ±5</td>
</tr>
<tr>
<td>Marijuana use occasions, Lifetime</td>
<td>59 ±76</td>
</tr>
<tr>
<td>Other drug use occasions, Lifetime</td>
<td>9 ±17</td>
</tr>
</tbody>
</table>
Exclusions

• No guardian
• MRI contraindications
• Prenatal substance exposure
• Hx psychiatric or neurological disorder
• Psychoactive medications
• Left-handed
Recovery from Teen Drinking

✓ Study design
 • Neurocognitive performance
 • Alcohol cue reactivity
 • Negative affect
 • Distress tolerance
Neuropsych Performance

<table>
<thead>
<tr>
<th>Test</th>
<th>Group Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory for Intentions Test</td>
<td>×</td>
</tr>
<tr>
<td>California Verbal Learning Test-II</td>
<td></td>
</tr>
<tr>
<td>Complex Figure</td>
<td>×</td>
</tr>
<tr>
<td>WASI Block Design</td>
<td>×</td>
</tr>
<tr>
<td>WAIS-III Digit Span</td>
<td></td>
</tr>
<tr>
<td>WAIS-III Arithmetic</td>
<td></td>
</tr>
<tr>
<td>WAIS-III Digit Symbol</td>
<td></td>
</tr>
<tr>
<td>D-KEFS Trails</td>
<td>×</td>
</tr>
<tr>
<td>D-KEFS Color-Word Interference</td>
<td></td>
</tr>
<tr>
<td>Digits Vigilance Test</td>
<td></td>
</tr>
<tr>
<td>WASI Vocabulary</td>
<td>×</td>
</tr>
<tr>
<td>WRAT-4 Reading</td>
<td>×</td>
</tr>
</tbody>
</table>

Winward et al., under review
Recovery of Visuospatial Deficits

- Linear mixed effects models
- Controlled for:
 - Externalizing behavior
 - FH SUD
- Different domains show different patterns of improvement
 - Improvement beyond practice alone
- Low power

→ NCANDA N=850

Winward et al., under review
Balloon Risk Analog Task (BART)

- Rapid event-related design
- 20 balloons; predetermined explosion points

Lejuez et al., 2002….2013
BART: Inflate

Lejuez et al., 2002...2013
BART: Win!

Lejuez et al., 2002–2013
BART: Pop!

Lejuez et al., 2002....2013
Anticipation

Bazinet et al., in preparation

CON change over time $p<.01$
Loss Outcome

Left VMPFC

Right VMPFC

Week: 1 3 5

CON

HD

$ p<.01 $

Bazinet et al., in preparation
FMRI BART: Drinkers

- At baseline, heavy drinkers:
 - ↓ insula activation during anticipation
 - ↑ VMPFC activation as evaluate negative outcomes
 - No differences after 2-3 weeks of abstinence

- With abstinence:
 - ↓ ACC activation during anticipation vs Controls
 - Suggests some neural recovery

Bazinet et al., in preparation
Recovery from Teen Drinking

✓ Study design
✓ Neurocognitive performance
 • Alcohol cue reactivity
 • Negative affect
 • Distress tolerance
FMRI: Alcohol Cue Reactivity

- Enhanced response in heavy drinkers
- Reduce with abstinence?

TASK STIMULI

- Shuffled
- Non-Alcohol
- Alcohol

Pulido et al., 2010, Addictive Behaviors
Alcohol Cue Reactivity Task

Picture Type
Alcohol
Non-alc
Shuffled
Fixation

Seconds

750\text{ms} \hspace{2cm} 1250\text{ms} \hspace{2cm} 2000\text{ms}

Trial: 2s \hspace{2cm} Fixation: 2, 4, or 6s

Pulido et al., 2010, Addictive Behaviors
Week 1: Alcohol vs. non-alc cues

Heavy Drinking > Control
adolescents in 6 regions:

1. Right superior frontal gyrus
2. Left medial frontal/striatum
3. Bilateral cerebellum
4. Left cingulate
5. Left pre/post-central gyrus
6. Left middle temporal gyrus

Pulido et al., in preparation
Weeks 3+: Alcohol vs. non-alc cues

- 3 weeks abstinent:
 - **HED** similar to **Controls** in 5 of 6 brain regions.
 - Right superior frontal, **HED > Controls**

- 5-6 weeks abstinent: no differences

Pulido et al., in preparation
Recovery from Teen Drinking

✓ Study design
✓ Neurocognitive performance
✓ Alcohol cue reactivity
• Negative affect
• Distress tolerance
Affect

Bekman et al., 2013, ACER
Recovery from Teen Drinking

 ✓ Study design
 ✓ Neurocognitive performance
 ✓ Alcohol cue reactivity
 ✓ Negative affect
 • Distress tolerance
Distress Tolerance: PASAT-D

- Frustration
- Irritability
- Happiness

Week: 1 3 5

Winward et al., in preparation
Recovery after 4 Weeks Abstinent

• **Neurocognition**
 - Some recovery
• **Alcohol cue reactivity**
 - Full recovery
• **Negative affect**
 - Recovery for boys, slower for girls
• **Distress tolerance**
 - Emotional reactivity largely resolve
Adolescent Neurocognitive Recovery Models

MODERATORS

- Gender
- Family History
- White Matter Integrity
- Intellectual Baseline
- Externalizing Symptoms
- Internalizing Symptoms
- Lifetime Alcohol Exposure

MEDIATORS

- Neuroanatomical Changes
- Severity of Recent Alcohol Use
- Negative Affect
- Neurocognitive Performance
- Sleep
- Time
Acknowledgements

• NIAAA R21 AA017321 (PI: Sandra Brown)
 – Project staff:
 • Karen Hanson, Ph.D.
 • Nicole Bekman, Ph.D.
 • Alissa Bazinet, Ph.D.
 • Jennifer Winward
 • Chase Wagner
 • Stephan Jordan

• U01 AA021695 (Brown)
• U01 AA021692 (Tapert)